Лагерра многочлены - Definition. Was ist Лагерра многочлены
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Лагерра многочлены - definition

Обобщенные полиномы Лагерра; Обобщённые полиномы Лагерра; Полиномы Лагерра; Лагерра полиномы; Многочлены Лягерра; Полином Лагерра
  • Первые 6 многочленов Лагерра.

Лагерра многочлены      
(по имени французского математика Э. Лагерра, Е. Laguerre; 1834-86)

специальная система многочленов последовательно возрастающих степеней. Для n = 0, 1, 2 ... Л. м. Ln(x) могут быть определены формулой:

;

в частности:

L0(x) = 1, L1(x) = x - 1, L2(x) = x2 - 4x + 2, L3(x) = x3 - 9x2 + 18x - 6.

Л. м. ортогональны (см. Ортогональные многочлены) на полупрямой х ≥ 0 относительно веса е. Дифференциальное уравнение:

ху'' + (1 - х)у' + ny = 0.

Рекуррентная формула:

Ln+1(x) = (x - 2n - 1)Ln(x) - n2Ln-1(x).

Лит.: Лебедев Н. Н., Специальные функции и их приложения, 2 изд., М. - Л., 1963.

Чебышева многочлены         
  • Многочлены Чебышёва первого рода
ДВЕ ПОСЛЕДОВАТЕЛЬНОСТИ ОРТОГОНАЛЬНЫХ МНОГОЧЛЕНОВ
Многочлен Чебышева; Многочлен Чебышёва; Полином Чебышева; Полином Чебышёва; Полиномы Чебышева; Полиномы Чебышёва; Чебышева многочлены; Многочлены Чебышева

1) Ч. м. 1-го рода - специальная система многочленов последовательно возрастающих степеней. Для n = 0, 1, 2,... определяются формулой:

В частности, Т0 = 1; T1 = х; T2 = 2x2 ―1; T3 = 4x3 ― 3x; T4 = 8x4 8x2 + 1. Ч. м. Tn (x) ортогональны (см. Ортогональные многочлены) на отрезке [-1; + 1] относительно веса (1 - x2)―1/2. Дифференциальное уравнение:

(1 - x2) у" - ху + n2у = 0.

Рекуррентная формула: Tn+1(x) = 2xTn (х) - Tn―1(x).

Ч. м. 1-го рода являются частным случаем Якоби многочленов (См. Якоби многочлены) Pn (αβ)(x):

.

2) Ч. м. 2-го рода Un (x) - ортогональная на отрезке [-1; + 1] относительно веса (1 -x2)1/2 система многочленов, связанная с Ч. м. 1-го рода, например рекуррентным соотношением:

(1 - x2) Un―1(х) = xTn (х) Tn+1(х).

Лит.: Чебышев П. Л., Полн. собр. соч., т. 2-3, М.-Л., 1947-48; Сеге Г., Ортогональные многочлены, пер. с англ., М., 1962.

ЧЕБЫШЕВА МНОГОЧЛЕНЫ         
  • Многочлены Чебышёва первого рода
ДВЕ ПОСЛЕДОВАТЕЛЬНОСТИ ОРТОГОНАЛЬНЫХ МНОГОЧЛЕНОВ
Многочлен Чебышева; Многочлен Чебышёва; Полином Чебышева; Полином Чебышёва; Полиномы Чебышева; Полиномы Чебышёва; Чебышева многочлены; Многочлены Чебышева
специальная система многочленов, ортогональных с весом (Чебышева многочлен 1-го рода) или с весом (Чебышева многочлен 2-го рода) на отрезке [-1; 1] (см. Ортогональная система функций). Введены в 1854 П. Л. Чебышевым.

Wikipedia

Многочлены Лагерра

В математике многочлены Лаге́рра, названные в честь Эдмона Лагерра (1834—1886), являются каноническими решениями уравнения Лагерра:

x y + ( 1 x ) y + n y = 0 , {\displaystyle x\,y''+(1-x)\,y'+n\,y=0,}

являющегося линейным дифференциальным уравнением второго порядка. В физической кинетике эти же многочлены (иногда с точностью до нормировки) принято называть полиномами Сонина или Сонина — Лагерра. Многочлены Лагерра также используются в квадратурной формуле Гаусса — Лагерра численного вычисления интегралов вида:

0 f ( x ) e x d x . {\displaystyle \int \limits _{0}^{\infty }f(x)e^{-x}\,dx.}

Многочлены Лагерра, обычно обозначающиеся как L 0 , L 1 , {\displaystyle L_{0},\;L_{1},\;\ldots } , являются последовательностью полиномов, которая может быть найдена по формуле Родрига

L n ( x ) = e x n ! d n d x n ( e x x n ) = k = 0 n ( 1 ) k k ! ( n k ) x k . {\displaystyle L_{n}(x)={\frac {e^{x}}{n!}}{\frac {d^{n}}{dx^{n}}}\left(e^{-x}x^{n}\right)=\sum _{k=0}^{n}{\frac {(-1)^{k}}{k!}}{n \choose k}x^{k}.}

Эти полиномы ортогональны друг другу со скалярным произведением:

f , g = 0 f ( x ) g ( x ) e x d x . {\displaystyle \langle f,\;g\rangle =\int \limits _{0}^{\infty }f(x)g(x)e^{-x}\,dx.}

Последовательность полиномов Лагерра — это последовательность Шеффера.

Многочлены Лагерра применяются в квантовой механике, в радиальной части решения уравнения Шрёдингера для атома с одним электроном.

Имеются и другие применения многочленов Лагерра.